IO Mapper Agent
About the IO Mapper Agent
When connecting agents in an application, the output of an agent needs to be compatible with the input of the agent that is connected to it. This compatibility needs to be guaranteed at three different levels:
- Transport level: the two agents need to use the same transport protocol.
- Format level: the two agents need to carry information using the same format (for example, the same JSON data structures).
- Semantic level: the two agents need to “talk about the same thing”.
Communication between agents is not possible if there are discrepancies between the agents at any of these levels.
Ensuring that agents are semantically compatible, that is, the output of the one agent contains the information needed by later agents, is an problem of composition or planning in the application. The IO Mapper Agent addresses level 2 and 3 compatibility. It is a component, implemented as an agent, that can make use of an LLM to transform the output of one agent to become compatible to the input of another agent. This can mean many different things:
- JSON structure transcoding: A JSON dictionary needs to be remapped into another JSON dictionary.
- Text summarisation: A text needs to be summarised or some information needs to be removed.
- Text translation: A text needs to be translated from one language to another.
- Text manipulation: Part of the information of one text needs to be reformulated into another text.
- A combination of the above.
The IO mapper Agent can be fed the schema definitions of inputs and outputs as defined by the Agent Connect Protocol <https://github.com/agntcy/acp-spec>
_.
Getting Started
Prerequisites
Use in your project
To install the IO Mapper Agent, run the following command:
pip install agntcy-iomapper
To get a local copy up and running, follow the steps below.
Clone the repository
git clone https://github.com/agntcy/iomapper-agnt.git
Install dependecies
poetry install
Usage
There are several different ways to leverage the IO Mapper functions in Python. There is an How to use the Agent IO mapping using models that can be invoked on different AI platforms and an imperative interface that does deterministic JSON remapping without using any AI models.
Key Features
The IO Mapper Agent uses an LLM to transform the inputs (typically the output of an agent) to match the desired output (typically the input of another agent). As such, it additionally supports specifying the model prompts for the translation. The configuration object provides a specification for the system and default user prompts:
This project supports specifying model interactions using LangGraph.
How to use the Agent IO mapping
Note
For each example, the detailed process of creating agents and configuring the respective multi-agent software is omitted. Instead, only the essential steps for configuring and integrating the IO mapper agent are presented.
LangGraph
We support usages with both LangGraph state defined with TypedDict or as a Pydantic object
Entities
IOMappingAgentMetadata
Bases: BaseModel
Show JSON schema:
{
"$defs": {
"FieldMetadata": {
"properties": {
"json_path": {
"description": "A json path to the field in the object",
"title": "Json Path",
"type": "string"
},
"description": {
"description": "A description of what the field represents",
"title": "Description",
"type": "string"
},
"examples": {
"anyOf": [
{
"items": {
"type": "string"
},
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "A list of examples that represents how the field in json_path is normaly populated",
"title": "Examples"
}
},
"required": [
"json_path",
"description"
],
"title": "FieldMetadata",
"type": "object"
}
},
"properties": {
"input_fields": {
"description": "an array of json paths representing fields to be used by io mapper in the mapping",
"items": {
"anyOf": [
{
"type": "string"
},
{
"$ref": "#/$defs/FieldMetadata"
}
]
},
"title": "Input Fields",
"type": "array"
},
"output_fields": {
"description": "an array of json paths representing firlds to be used by io mapper in the result",
"items": {
"anyOf": [
{
"type": "string"
},
{
"$ref": "#/$defs/FieldMetadata"
}
]
},
"title": "Output Fields",
"type": "array"
},
"input_schema": {
"anyOf": [
{
"additionalProperties": true,
"type": "object"
},
{
"type": "null"
}
],
"default": null,
"description": "defines the schema for the input data",
"title": "Input Schema"
},
"output_schema": {
"anyOf": [
{
"additionalProperties": true,
"type": "object"
},
{
"type": "null"
}
],
"default": null,
"description": "defines the schema for result of the mapping",
"title": "Output Schema"
},
"output_description_prompt": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "A prompt structured using a Jinja template that will be used by the llm for a better mapping",
"title": "Output Description Prompt"
},
"field_mapping": {
"anyOf": [
{
"additionalProperties": {
"type": "string"
},
"type": "object"
},
{
"type": "null"
}
],
"default": null,
"description": "A dictionary representing how the imperative mapping should be done where the keys are fields of the output object and values are JSONPath (strings)",
"title": "Field Mapping"
}
},
"required": [
"input_fields",
"output_fields"
],
"title": "IOMappingAgentMetadata",
"type": "object"
}
Fields:
-
input_fields
(List[Union[str, FieldMetadata]]
) -
output_fields
(List[Union[str, FieldMetadata]]
) -
input_schema
(Optional[dict[str, Any]]
) -
output_schema
(Optional[dict[str, Any]]
) -
output_description_prompt
(Optional[str]
) -
field_mapping
(Optional[dict[str, Union[str, Callable]]]
)
Source code in .venv/lib/python3.13/site-packages/agntcy_iomapper/base/models.py
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
|
field_mapping = None
pydantic-field
A dictionary representing how the imperative mapping should be done where the keys are fields of the output object and values are JSONPath (strings)
input_fields
pydantic-field
an array of json paths representing fields to be used by io mapper in the mapping
input_schema = None
pydantic-field
defines the schema for the input data
output_description_prompt = None
pydantic-field
A prompt structured using a Jinja template that will be used by the llm for a better mapping
output_fields
pydantic-field
an array of json paths representing firlds to be used by io mapper in the result
output_schema = None
pydantic-field
defines the schema for result of the mapping
IOMappingAgent
Bases: BaseModel
This class exposes all The IOMappingAgent class is designed for developers building sophisticated multi-agent software that require seamless integration and interaction between the different agents and workflow steps. By utilizing the methods provided, developers can construct complex workflows and softwares. The IOMappingAgent class is intended to serve as a foundational component in applications requiring advanced IO mapping agents in multi-agent systems.
Show JSON schema:
{
"$defs": {
"FieldMetadata": {
"properties": {
"json_path": {
"description": "A json path to the field in the object",
"title": "Json Path",
"type": "string"
},
"description": {
"description": "A description of what the field represents",
"title": "Description",
"type": "string"
},
"examples": {
"anyOf": [
{
"items": {
"type": "string"
},
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "A list of examples that represents how the field in json_path is normaly populated",
"title": "Examples"
}
},
"required": [
"json_path",
"description"
],
"title": "FieldMetadata",
"type": "object"
},
"IOMappingAgentMetadata": {
"properties": {
"input_fields": {
"description": "an array of json paths representing fields to be used by io mapper in the mapping",
"items": {
"anyOf": [
{
"type": "string"
},
{
"$ref": "#/$defs/FieldMetadata"
}
]
},
"title": "Input Fields",
"type": "array"
},
"output_fields": {
"description": "an array of json paths representing firlds to be used by io mapper in the result",
"items": {
"anyOf": [
{
"type": "string"
},
{
"$ref": "#/$defs/FieldMetadata"
}
]
},
"title": "Output Fields",
"type": "array"
},
"input_schema": {
"anyOf": [
{
"additionalProperties": true,
"type": "object"
},
{
"type": "null"
}
],
"default": null,
"description": "defines the schema for the input data",
"title": "Input Schema"
},
"output_schema": {
"anyOf": [
{
"additionalProperties": true,
"type": "object"
},
{
"type": "null"
}
],
"default": null,
"description": "defines the schema for result of the mapping",
"title": "Output Schema"
},
"output_description_prompt": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "A prompt structured using a Jinja template that will be used by the llm for a better mapping",
"title": "Output Description Prompt"
},
"field_mapping": {
"anyOf": [
{
"additionalProperties": {
"type": "string"
},
"type": "object"
},
{
"type": "null"
}
],
"default": null,
"description": "A dictionary representing how the imperative mapping should be done where the keys are fields of the output object and values are JSONPath (strings)",
"title": "Field Mapping"
}
},
"required": [
"input_fields",
"output_fields"
],
"title": "IOMappingAgentMetadata",
"type": "object"
}
},
"description": "This class exposes all\nThe IOMappingAgent class is designed for developers building sophisticated multi-agent software that require seamless integration and interaction between\nthe different agents and workflow steps.\nBy utilizing the methods provided, developers can construct complex workflows and softwares.\nThe IOMappingAgent class is intended to serve as a foundational component in applications requiring advanced IO mapping agents in multi-agent systems.",
"properties": {
"metadata": {
"anyOf": [
{
"$ref": "#/$defs/IOMappingAgentMetadata"
},
{
"type": "null"
}
],
"description": "Details about the fields to be used in the translation and about the output"
},
"llm": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Model to use for translation as LangChain description or model class.",
"title": "Llm"
}
},
"required": [
"metadata"
],
"title": "IOMappingAgent",
"type": "object"
}
Fields:
-
metadata
(Optional[IOMappingAgentMetadata]
) -
llm
(Optional[Union[BaseChatModel, str]]
)
Validators:
-
_validate_obj
Source code in .venv/lib/python3.13/site-packages/agntcy_iomapper/agent/agent_io_mapper.py
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
|
llm = None
pydantic-field
Model to use for translation as LangChain description or model class.
metadata
pydantic-field
Details about the fields to be used in the translation and about the output
as_worfklow_step(workflow)
staticmethod
This static method allows for the addition of a step to a LlamaIndex workflow. It integrates seamlessly into workflows, enabling structured progression and task execution.
Source code in .venv/lib/python3.13/site-packages/agntcy_iomapper/agent/agent_io_mapper.py
160 161 162 163 164 165 166 |
|
as_workflow_agent(mapping_metadata, llm, name, description, can_handoff_to=None, tools=[])
staticmethod
This static method returns an instance of an agent that can be integrated into a Multi AgentWorkflow. It provides robust IO mapping capabilities essential for complex multi agent workflow interactions.
Source code in .venv/lib/python3.13/site-packages/agntcy_iomapper/agent/agent_io_mapper.py
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
|
langgraph_imperative(data, config=None)
Description: Similar to langgraph_node, this method adds a language graph node to a multi-agent software. However, it does not utilize a language model for IO mapping, offering an imperative approach to agent integration.
Source code in .venv/lib/python3.13/site-packages/agntcy_iomapper/agent/agent_io_mapper.py
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
|
langgraph_node(data, config=None)
This method is used to add a language graph node to a langgraph multi-agent software. It leverages language models for IO mapping, ensuring efficient communication between agents.
Source code in .venv/lib/python3.13/site-packages/agntcy_iomapper/agent/agent_io_mapper.py
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
|
LangGraph Example 1
This example involves a multi-agent software system designed to process a create engagement campaign and share within an organization. It interacts with an agent specialized in creating campaigns, another agent specialized in identifying suitable users. The information is then relayed to an IO mapper, which converts the list of users and the campaign details to present statistics about the campaign.
Define an agent io mapper metadata
metadata = IOMappingAgentMetadata(
input_fields=["selected_users", "campaign_details.name"],
output_fields=["stats.status"],
)
The above instruction directs the IO mapper agent to utilize the selected_users
and name
from the campaign_details
field and map them to the stats.status
.
No further information is needed since the type information can be derived from
the input data which is a pydantic model.
Tip
Both input_fields and output_fields can also be sourced with a list composed of str and/or instances of FieldMetadata as the bellow example shows
metadata = IOMappingAgentMetadata(
input_fields=[
FieldMetadata(
json_path="selected_users", description="A list of users to be targeted"
),
FieldMetadata(
json_path="campaign_details.name",
description="The name that can be used by the campaign",
examples=["Campaign A"]
),
],
output_fields=["stats"],
)
Define an Instance of the Agent
mapping_agent = IOMappingAgent(metadata=metadata, llm=llm)
Add the node to the LangGraph graph
workflow.add_node(
"io_mapping",
mapping_agent.langgraph_node,
)
Add the Edge
With the edge added, you can run the your LangGraph graph.
workflow.add_edge("create_communication", "io_mapping")
workflow.add_edge("io_mapping", "send_communication")
LangGraph Example 2
This example involves a multi-agent software system designed to process a list of ingredients. It interacts with an agent specialized in recipe books to identify feasible recipes based on the provided ingredients. The information is then relayed to an IO mapper, which converts it into a format suitable for display to the user.
Define an Agent IO Mapper Metadata
metadata = IOMappingAgentMetadata(
input_fields=["documents.0.page_content"],
output_fields=["recipe"],
input_schema=TypeAdapter(GraphState).json_schema(),
output_schema={
"type": "object",
"properties": {
"title": {"type": "string"},
"ingredients": {"type": "array", "items": {"type": "string"}},
"instructions": {"type": "string"},
},
"required": ["title", "ingredients, instructions"],
},
)
Define an Instance of the Agent
mapping_agent = IOMappingAgent(metadata=metadata, llm=llm)
Add the node to the LangGraph graph
graph.add_node(
"recipe_io_mapper",
mapping_agent.langgraph_node,
)
Add the Edge
With the edge added, you can run the your LangGraph graph.
graph.add_edge("recipe_expert", "recipe_io_mapper")
LlamaIndex
We support both LlamaIndex Workflow and the new AgentWorkflow multi agent software
Entities
IOMappingInputEvent
... agntcy_iomapper.IOMappingInputEvent
IOMappingOutputEvent
... agntcy_iomapper.IOMappingOutputEvent
Example of usage in a LlamaIndex workflow
In this example we recreate the campaign workflow using LlamaIndex workflow <https://docs.llamaindex.ai/en/stable/module_guides/workflow/>
_
Begin by importing the neccessary object
from agntcy_iomapper import IOMappingAgent, IOMappingAgentMetadata
Define the workflow
class CampaignWorkflow(Workflow):
@step
async def prompt_step(self, ctx: Context, ev: StartEvent) -> PickUsersEvent:
await ctx.set("llm", ev.get("llm"))
return PickUsersEvent(prompt=ev.get("prompt"))
@step
async def pick_users_step(
self, ctx: Context, ev: PickUsersEvent
) -> CreateCampaignEvent:
return CreateCampaignEvent(list_users=users)
# The step that will trigger IO mapping
@step
async def create_campaign(
self, ctx: Context, ev: CreateCampaignEvent
) -> IOMappingInputEvent:
prompt = f"""
You are a campaign builder for company XYZ. Given a list of selected users and a user prompt, create an engaging campaign.
Return the campaign details as a JSON object with the following structure:
{{
"name": "Campaign Name",
"content": "Campaign Content",
"is_urgent": yes/no
}}
Selected Users: {ev.list_users}
User Prompt: Create a campaign for all users
"""
parser = PydanticOutputParser(output_cls=Campaign)
llm = await ctx.get("llm", default=None)
llm_response = llm.complete(prompt)
try:
campaign_details = parser.parse(str(llm_response))
metadata = IOMappingAgentMetadata(
input_fields=["selected_users", "campaign_details.name"],
output_fields=["stats"],
)
config = LLamaIndexIOMapperConfig(llm=llm)
io_mapping_input_event = IOMappingInputEvent(
metadata=metadata,
config=config,
data=OverallState(
campaign_details=campaign_details,
selected_users=ev.list_users,
),
)
return io_mapping_input_event
except Exception as e:
print(f"Error parsing campaign details: {e}")
return StopEvent(result=f"{e}")
@step
async def after_translation(self, evt: IOMappingOutputEvent) -> StopEvent:
return StopEvent(result="Done")
Tip
The highlighted lines shows how the io mapper can be triggered
Add The IO mapper step
w = CampaignWorkflow()
IOMappingAgent.as_worfklow_step(workflow=w)
Example of usage in a LlamaIndex AgentWorkflow
In this example we recreate the recipe workflow using LlamaIndex AgentWorkflow <https://docs.llamaindex.ai/en/stable/module_guides/workflow/>
_
Import the necessary objects
from agntcy_iomapper import FieldMetadata, IOMappingAgent, IOMappingAgentMetadata
Define an instance of the IOMappingAgentMetadata
mapping_metadata = IOMappingAgentMetadata(
input_fields=["documents.0.text"],
output_fields=[
FieldMetadata(
json_path="recipe",
description="this is a recipe for the ingredients you've provided",
)
],
input_schema=TypeAdapter(GraphState).json_schema(),
output_schema={
"type": "object",
"properties": {
"title": {"type": "string"},
"ingredients": {"type": "array", "items": {"type": "string"}},
"instructions": {"type": "string"},
},
"required": ["title", "ingredients, instructions"],
},
)
Finally define the IOMappingAgent and add it to the AgentWorkflow.
Important to note that a tool is passed, to instruct the io mapper where to go next in the flow.
io_mapping_agent = IOMappingAgent.as_workflow_agent(
mapping_metadata=mapping_metadata,
llm=llm,
name="IOMapperAgent",
description="Useful for mapping a recipe document into recipe object",
can_handoff_to=["Formatter_Agent"],
tools=[got_to_format],
)
io_mapping_agent = IOMappingAgent.as_workflow_agent(
mapping_metadata=mapping_metadata,
llm=llm,
name="IOMapperAgent",
description="Useful for mapping a recipe document into recipe object",
can_handoff_to=["Formatter_Agent"],
tools=[got_to_format],
)
Use Examples
- Install:
cmake <https://cmake.org/>
_-
pip <https://pip.pypa.io/en/stable/installation/>
_ -
From the
examples
folder run the desired make command, for example:
make make run_lg_eg_py
Contributing
Contributions are what make the open source community such an amazing place to
learn, inspire, and create. Any contributions you make are greatly
appreciated. For detailed contributing guidelines, please see
CONTRIBUTING.md <https://github.com/agntcy/acp-sdk/blob/main/docs/CONTRIBUTING.md>
_
Copyright Notice and License
Copyright Notice and License <https://github.com/agntcy/acp-sdk/blob/main/LICENSE>
_
Copyright (c) 2025 Cisco and/or its affiliates.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.